
Binary Decision Diagrams by Shared Rewriting

Jaco van de Pol�� and Hans Zantema�����

� CWI� P�O��box ������� 	��� GB Amsterdam� The Netherlands
� Department of Computer Science� Utrecht University
P�O��box 
���
�� ���
 TB Utrecht� The Netherlands

Abstract� In this paper we propose a uniform description of basic BDD
theory and algorithms by means of term rewriting� Since a BDD is a
DAG instead of a tree we need a notion of shared rewriting and develop
appropriate theory� A rewriting system is presented by which canonical
forms can be obtained� Various reduction strategies give rise to dier�
ent algorithms� A layerwise strategy is proposed having the same time
complexity as the traditional apply�algorithm� and the lazy strategy is
studied� which resembles the existing up�one�algorithm� We show that
these algorithms have incomparable performance�

� Introduction

Equivalence checking and satis�ability testing of propositional formulas are basic
but hard problems in many applications� including hardware veri�cation ��� and
symbolic model checking ���� Binary decision diagrams 	BDDs
 ��� �� � are an
established technique for this kind of boolean formula manipulation� The basic
ingredient is representing a boolean formula by a unique canonical form� the so
called reduced ordered BDD 	ROBDD
� After canonical forms have been estab�
lished equivalence checking and satis�ability testing are trivial� Constructing the
canonical form however� can be exponential�

Various extensions to the basic data�type have been proposed� like DDDs ����
BEDs ��� and EQ�BDDs ���� Many variants of Bryant�s original apply�algorithm
for computing boolean combinations of ROBDDs have been proposed in the
literature� Usually� such adaptations are motivated by particular benchmarks�
that show a speed�up for certain cases� In many cases� the relative complexity
between the variants is not clear and di�cult to establish due to the variety of
data�types�

Therefore� we propose to use term rewriting systems 	TRS
 as a uniform
model for the study of operations on BDDs� By enriching the signature� extended
data types can be modeled� Various di�erent algorithms can be obtained from a
�xed TRS by choosing a reduction strategy� In our view� this opens the way in
which the BDD�world can bene�t from the huge amount of research on rewriting
strategies 	see ��� for an overview
�

� Email� Jaco�van�de�Pol�cwi�nl
�� Email� hansz�cs�uu�nl



A complication is that the relative e�ciency of BDDs hinges on the maxi�
mally shared representation� In Section � we present an elegant abstraction of
maximally shared graph rewriting� in order to avoid its intricacies� Instead of
introducing a rewrite relation on graphs� we introduce a shared rewrite step on
terms� In a shared rewrite step� all identical redexes have to be rewritten at once�
We prove that if a TRS is terminating and con�uent� then the shared version
is so too� This enables us to lift rewrite results from standard term rewriting to
the shared setting for free�

In Section �� we present a TRS for applying logical operations to ROBDDs
and prove its correctness� Because a TRS�computation is non�deterministic� this
proves the correctness of a whole class of algorithms� In particular� we recon�
struct the traditional apply�algorithm as an application of the so�called layerwise
strategy� We also investigate the well�known innermost and lazy strategies� The
lazy strategy happens to coincide with the the up�one algorithm in ��� 	those
authors argue that their up�all algorithm is similar to the traditional apply
�

Finally we provide series of examples to show that the innermost strategy
performs quite bad� and that the apply�algorithm and the lazy strategy have
incomparable complexity� In ��� an example is given for one direction� but this
depends on additional structural rules� An extended version of this paper ap�
peared as �����

� Shared Term Rewriting

We assume familiarity with standard notions from term rewriting� See ��� for
an introduction� The size of a term T is usually measured as the number of its
internal nodes� viewed as a tree� This is inductively de�ned as �	T 
 � � if T is
a constant or a variable� and �	f	T�� � � � � Tn

 � � ��	T�
 � � � ���	Tn
�

However� for e�ciency reasons� most implementations apply the sharing tech�
nique� Each subterm is stored at a certain location in the memory of the machine�
various occurrences of the same subterm are replaced by a pointer to this sin�
gle location� This shared representation can be seen as a directed acyclic graph
	DAG
� Mathematically� we de�ne the maximally shared representation of a term
as the set of its subterms� It is clear that there is a one�to�one correspondence
between a tree and its maximally shared representation�

A natural size of the shared representation is the number of nodes in the
DAG� So we de�ne the shared size of a term�

�sh	t
 � �fs j s is a subterm of tg�

The size of the shared representation can be much smaller than the tree size
as illustrated by the next example� which is exactly the reason that sharing is
applied�

Example �� De�ne T� � true and U� � false� For binary symbols p�� p�� p�� � � �
de�ne inductively Tn � pn	Tn��� Un��
 and Un � pn	Un��� Tn��
� Considering
Tn as a term its size �	Tn
 is exponential in n� However� the only subterms of
Tn are true� false� and Ti and Ui for i � n� hence �sh	Tn
 is linear in n� ut



Maximal sharing is essentially the same as what is called the fully collapsed
tree in ����� In implementations some care has to be taken in order to keep terms
maximally shared� In essence� when constructing or modifying a term� a hash
table is used to �nd out whether a node representing this term exists already�
If so� this node is reused� otherwise a new node is created� In order to avoid
these di�culties in complexity analysis� we introduce the shared rewrite relation
� on terms� In a shared rewrite step� all occurrences of a redex have to be
rewritten at once� We will take the maximum number of ��steps from t as the
time complexity of computing t�

De�nition �� For terms t and t� there is a shared rewrite step t �R t� with
respect to a rewrite system R if t � C�l�� � � � � l�� and t� � C�r� � � � � � r� � for one
rewrite rule l � r in R� some substitution � and some multi�hole context C
having at least one hole� and such that l� is not a subterm of C�

Both in unshared rewrite steps�R and shared rewrite steps�R the subscript
R is often omitted if no confusion is caused� We now study some properties of
the rewrite relation �R� The following lemmas are straightforward from the
de�nition�

Lemma �� If t� t� then t�� t��

Lemma �� If t� t� then a term t�� exists satisfying t� �� t�� and t� t���

The next theorem shows how the basic rewriting properties are preserved by
sharing� In particular� if � is terminating and all critical pairs converge� then
termination and con�uence of � can be concluded too�

Theorem �� ��� If � is terminating then � is terminating too�
��� A term is a normal form with respect to � if and only if it is a normal

form with respect to ��
�	� If � is weakly normalizing and � has unique normal forms� then � is

con
uent�
��� If � is con
uent and terminating then � is con
uent and terminating

too�

Proof� Part 	�
 follows directly from Lemma ��
If t is a normal form with respect to� then it is a normal form with respect

to � by Lemma �� If t is a normal form with respect to � then it is a normal
form with respect to � by Lemma �� Hence we have proved part 	�
�

For part 	�
 assume s �� s� and s �� s�� Since � is weakly normalizing
there are normal forms n� and n� with respect to � satisfying si �

� ni for
i � �� �� By part 	�
 n� and n� are normal forms with respect to �� by Lemma
� we have s �� ni for i � �� �� Since � has unique normal forms we conclude
n� � n�� Since si �

� ni for i � �� � we proved that � is con�uent�
Part 	�
 is immediate from part 	�
 and part 	�
� ut

Note that Theorem � holds for any two abstract reduction systems � and
� satisfying Lemmas � and � since the proof does not use anything else�



Example �� 	Due to Vincent van Oostrom
 The converse of Theorem ��� doesn�t
hold� The rewrite system consisting of the two rules f	�� �
� f	�� �
 and �� �
admits an in�nite reduction f	�� �
 � f	�� �
 � f	�� �
 � � � �� but the shared
rewrite relation � is terminating�

For preservation of con�uence the combination with termination is essential�
as is shown by the rewrite system consisting of the two rules � � f	�� �
 and
� � f	�� �
� This system is con�uent since it is orthogonal� but � is not even
locally con�uent since f	�� �
 reduces to both f	�� f	�� �

 and f	f	�� �
� �
� not
having a common ��reduct� ut

Notions on reduction strategies like innermost and outermost rewriting carry
over to shared rewriting as follows� As usual a redex is de�ned to be a subterm
of the shape l� where l � r is a rewrite rule and � is a substitution� A 	non�
deterministic
 reduction strategy is a function that maps every term that is not in
normal form to a non�empty set of its redexes� being the redexes that are allowed
to be reduced� For instance� in the innermost strategy the set of redexes is chosen
for which no proper subterm is a redex itself� This naturally extends to shared
rewriting� choose a redex in the set of allowed redexes� and reduce all occurrences
of that redex� Note that it can happen that some of these occurrences are not in
the set of allowed redexes� For instance� for the two rules f	x
 � x� a � b the
shared reduction step g	a� f	a

 � g	b� f	b

 is an outermost reduction� while
only one of the two occurrences of the redex a is outermost�

� ROBDD Algorithms as Reduction Strategies

We consider a set A of binary atoms� whose typical elements are denoted by
p� q� r� � � �� A binary decision tree over A is a binary tree in which every internal
node is labeled by an atom and every leaf is labeled either true or false� In other
words� a decision tree over A is de�ned to be a ground term over the signature
having true and false as constants and elements of A as binary symbols�

Given an instance s � A� ftrue� falseg� every decision tree can be evaluated
to either true or false� by interpreting p	T� U
 as �if s	p
 then T else U�� So a
decision tree represents a boolean function� Conversely� it is not di�cult to see
that every boolean function on A can be described by a decision tree� One way
to do so is building a decision tree such that in every path from the root to a
leaf every p � A occurs exactly once� and plugging the values true and false in
the ��A leaves according to the ��A lines of the truth table of the given boolean
function� Two decision trees T and U are called equivalent if they represent the
same boolean function�

A decision tree is said to be in canonical form with respect to some total
order � on A if on every path from the root to a leaf the atoms occur in strictly
increasing order� and no subterm of the shape p	T�� T�
 exists for which T�
and T� are syntactically equal� A BDD 	binary decision diagram
 is de�ned to
be a decision tree in which sharing is allowed� An ROBDD 	reduced ordered
binary decision diagram
 can now simply be de�ned as the maximally shared
representation of a decision tree in canonical form�



Theorem � �Bryant ���	� Let � be a total order on A� Then every boolean
function can uniquely be represented by an ROBDD with respect to ��

We refer to ���� for our proof of this fact using standard rewriting analysis
based on weak normalization and con�uence of an appropriate rewrite system�
whose normal forms are canonical�

Theorem � suggests a way to decide whether two logical formulas are equiv�
alent� bring both expressions to ROBDD form and look whether the results are
syntactically equal� We now describe how an arbitrary propositional formula can
be transformed to an ROBDD by rewriting� Due to sharing the basic steps of
rewriting will be � instead of ��

As a �rst step every occurrence of an atom p in the formula is replaced by
p	true� false
� being the decision tree in canonical form representing the propo�
sitional formula p� The signature of the TRS consists of the constants true and
false� the unary symbol �� binary symbols for all elements of A and the binary
symbols �� � and xor� written in�x as usually�

Next we give a rewrite system B by which the propositional symbols are
propagated through the term and eventually removed� reaching the ROBDD as
the normal form� In Figure �� p ranges over A and � ranges over the symbols ��
� and xor� The rules of the shape p	x� x
 � x are called idempotence rules� all
other rules are called essential rules�

p�x� x�� x for all p
�p�x� y�� p��x��y� for all p

p�x� y� � p�z�w�� p�x � z� y � w� for all �� p
p�x� y� � q�z� w�� p�x � q�z� w�� y � q�z� w�� for all �� p � q

q�x� y� � p�z�w�� p�q�x� y� � z� q�x� y� � w� for all �� p � q

�true � false

�false � true

true � x� true

x � true � true

false � x� x

x � false � x

true � x� x

x � true � x

false � x� false

x � false � false

true xor x� �x

x xor true � �x

false xor x� x

x xor false � x

Fig� �� The rewrite system B�

We have de�ned B in such a way that terms are only rewritten to logically
equivalent terms� Hence if a term rewrites in some way by B to an ROBDD� we
may conclude that the result is the unique ROBDD equivalent to the original
term 	independent of whether the system is con�uent
�



The rewrite system B is terminating since every left hand side is greater than
the corresponding right hand side with respect to any recursive path order for
a precedence 	 satisfying xor 	 � 	 b and � 	 p for � � f������ xorg and
b � ffalse� trueg and p � A� Hence reducing will lead to a normal form� and it
is easily seen that ground normal forms do not contain symbols ������ xor� By
Theorem ��	�
 this also holds for shared rewriting�

The rewrite system B is not 	ground
 con�uent� for instance if q � p the term
q	p	false� true
� p	false� true

 � q	false� true
 reduces to the two distinct normal
forms p	false� q	false� true

 and q	false� p	false� true

� Moreover� we see that B
admits ground normal forms that are not in canonical form� However� when
starting with a propositional formula this cannot happen due to the following

Invariant
 For every subterm of the shape p	T� U
 for p � A all symbols
q � A occurring in T or U satisfy p � q�

In a propositional formula in which every atom p is replaced by p	true� false

this clearly holds since T � true and U � false for every subterm of the shape
p	T� U
� Further for all rules of B it is easily checked that if the invariant holds
for some term� after application of a B�rule it remains to hold� Hence for normal
forms of propositional formulas the invariant holds� Due to the idempotence
rules we now conclude that these normal forms are in canonical form� We have
proved the following theorem�

Theorem �� Let � be a propositional formula over A� Replace every atom p � A

occurring in � by p	true� false
 and reduce the resulting term to normal form with
respect to �B� Then the resulting normal form is the ROBDD of ��

In this way we have described the process of constructing the unique ROBDD
purely by rewriting� Of course this system is inspired by ��� �� but instead of
having a deterministic algorithm� we now still have a lot of freedom in choosing
the strategy for reducing to normal form� But one strategy may be much more
e�cient than another� We �rst show that the leftmost innermost strategy� even
when adapted to shared rewriting� may be extremely ine�cient�

Example 	� As in Example � de�ne T� � true and U� � false� and de�ne induc�
tively Tn � pn	Tn��� Un��
 and Un � pn	Un��� Tn��
�

Both Tn and Un are in canonical form� hence can be considered as ROBDDs�
Both are the ROBDDs of simple propositional formulas� in particular for odd n

the term Tn is the ROBDD of xor
n
i�� pi and Un of �	xorni�� pi
� and for even n

the other way around� In fact they describe the parity functions yielding true if
and only if the number of i�s for which pi holds is even or odd� respectively�

Surprisingly� for every n both for �	Tn
 and �	Un
 �B�reduction to normal
form by the leftmost�innermost strategy requires �n
 � ��steps� where a ��step
is de�ned to be an application of a rule �p	x� y
� p	�x��y
� We prove this by
induction on n� For n � � it trivially holds� For n � � the �rst reduction step is

�	Tn
�B pn	�	Tn��
��	Un��

�



The leftmost�innermost reduction continues by reducing �	Tn��
� During this
reduction no ��redex is shared in �	Un��
 since �	Un��
 contains only one ��
symbol that is too high in the tree� Hence �	Tn��
 is reduced to normal form
with �n�� 
 � ��steps due to the induction hypothesis� without a�ecting the
right part �	Un��
 of the term� After that another �

n��
� ��steps are required
to reduce �	Un��
� making the total of �

n
 � ��steps� For �	Un
 the argument
is similar� concluding the proof�

Although the terms encountered in this reduction are very small in the shared
representation� we see that by this strategy every ��step consists of one single
��step� of which exponentially many are required� ut

We will now show that the standard algorithm based on Bryant�s apply can
essentially be mimicked by a layerwise reduction strategy� having the same com�
plexity� We say that a subterm V of a term T is an essential redex if V � l� for
some substitution � and some essential rule l� r in B�

Proposition �� Let T� U be ROBDDs�

� If �T ��

B
V then every essential redex in V is of the shape �T � for some

subterm T � of T �
� If T �U ��

B
V for � � � or � � � then every essential redex in V is of the

shape T � �U � for some subterm T � of T and some subterm U � of U �
� If T xor U ��

B
V then every essential redex in V is of the shape T � xor U �

or �T � or �U � for some subterm T � of T and some subterm U � of U �

Proof� This proposition immediately follows from its unshared version� let T� U
be decision trees in canonical form and replace �B in all three assertions by
�B� This unshared version is proved by induction on the reduction length of
��

B
and considering the shape of the rules of B� ut

The problem in the exponential leftmost innermost reduction above is that
during the reduction very often the same redex is reduced� The key idea now is
that in a layerwise reduction every essential redex is reduced at most once�

De�nition �� An essential redex l� is called a p�redex for p � A if p is the
smallest symbol occurring in l� with respect to �� An essential redex l� is called
an ��redex if no symbol p � A occurs in l�� dene p �� for all p � A�

A redex is called layerwise if either

� it is a redex with respect to an idempotence rule� or
� it is a p�redex for p � A � f�g� and no q�redex for q � p exists� and if the

root of the redex is � then no p�redex exists of which the root is xor�

A �B�reduction is called layerwise if every step consists of the reduction of
all occurrences of a layerwise redex�

Clearly every term not in normal form contains a layerwise redex� hence
layerwise reduction always leads to the unique normal form� Just like innermost
and outermost reduction� layerwise reduction is a non�deterministic reduction
strategy� We will show that layerwise reduction leads to normal forms e�ciently
for suitable terms� due to the following proposition�



Proposition �� Let T� U be ROBDDs� In every layerwise �B�reduction of �T �
T � U � T � U or T xor U every essential redex is reduced at most once�

Proof� Assume that an essential redex l� is reduced twice�

C�l����
B
C ��l� ��B � � �

Note that l� is a p�redex for some p � A� f�g� because it is essential� Since
the reduction is layerwise� every reduction step is either an idempotence step or
a reduction of a p�redex for this particular p� Due to Proposition � and the shape
of the rules the only kind of new p�redexes that can be created in this reduction
is a p�redex having � as its root� obtained by reducing a p�redex having xor as its
root� So this p�redex with root xor already occurs in C�l��� Since the reduction
is layerwise the root of l� is not �� We conclude that the p�redex l� in C ��l��
is not created during this reduction� hence it already occurred in the �rst term
C�l��� Since we apply shared rewriting this occurrence of l� was already reduced
in the �rst step� contradiction� ut

Theorem � Let T be an ROBDD� Then every layerwise �B�reduction of �T
contains at most �sh	T 
 steps�

Let T� U be ROBDDs� Then every layerwise �B�reduction of T � U � T � U

or T xor U contains O	�sh	T 
 �sh	U

 steps�

Proof� If a layerwise reduction of �T contains an idempotence step V �B V ��
then this idempotence step was also possible on the original term T � contradicting
the assumption that T is an ROBDD� Hence a layerwise reduction of �T consists
only of reductions of essential redexes� and by Proposition � the number of
candidates is at most �sh	T 
� By Proposition � each of these possible essential
redexes is reduced at most once� hence the total number of steps is at most
�sh	T 
�

Let V be either T � U � T � U or T xor U � Then a layerwise reduction of V
consists of a combination of reductions of essential redexes and a number of idem�
potence steps� By Proposition � the number of candidates for essential redexes
is O	�sh	T 
 �sh	U

� each of which is reduced at most once by Proposition ��
Hence the total number of reductions of essential redexes is O	�sh	T 
�sh	U

�
Since in every reduction of an essential redex the shared size �sh increases by
at most one� and by every idempotence step �sh decreases by at least one� the
total number of idempotence steps is at most �sh	V 
 �O	�sh	T 
 �sh	U

 �
O	�sh	T 
 �sh	U

� So the total number of steps is O	�sh	T 
 �sh	U

� ut

The procedure sketched above mimics Bryant�s original apply�function� On
formulas with more than one connective� it is repeatedly applied to one of the
innermost connectives� thus removing all connectives step by step� It can also be
seen as lifting all propositional atoms� for which reason it is called up�all in ����
Note that this is not the same as applying the layerwise strategy on the formula
itself�

However� other strategies are also conceivable� For instance� we could device
a strategy which brings the smallest atom to the root very quickly� To this end�



we de�ne head normal forms to be terms of the form false� true and p	T� U
�
The lazy strategy is de�ned to forbid reductions inside T in subterms of the form
T � U � U � T and �T in case T is in head normal form� We will show that the
lazy strategy is not comparable to the apply�algorithm�

Lemma �� Each �unshared� lazy reduction sequence from T leads to a head
normal form in at most ��	T 
 reduction steps�

Proof� Induction on T � The cases false� true and p	T� U
 are trivial�
Let T � P � Q� with � � fxor����g� Let �	P 
 � m and �	Q
 � n� By

induction hypothesis� P reduces to head normal form in at most �m steps� So
the lazy strategy allows at most �m reductions in the left hand side of P �Q�
Similarly� in the right hand side at most �n steps are admitted�

Hence after at most �	m� n
 steps� P �Q is reduced to one of� p	P�� P�
 �
q	Q�� Q�
 or b �Q� or P� � b� where b � ffalse� trueg and Pi and Qi are in head
normal form for i � �� �� In most of the cases this reduces to head normal form
in the next step� for true xor Q� and P� xor true it takes two steps to reach a
head normal form� So we use at most �	m� n
 � � � ��	T 
 steps�

Case T � �P is similar but easier� ut

Example �� Let � be a formula of size m� whose ROBDD�representation is ex�
ponentially large in m 	for instance

Wn
i��	pi�qi
 with pi � qj for all i and j ���
�

Assume that atom p is smaller than all atoms occurring in formula �� Consider
the formula p� 	���p
� which is clearly unsatis�able� Note that the traditional
algorithm using apply will as an intermediate step always completely build the
ROBDD for �� which is exponential by assumption�

We now show that the lazy strategy has linear time complexity� Replace each
atom q by q	true� false
� transforming � to ��� Using the lazy reduction strategy
sketched above� we always get a reduction of the following shape�

p	true� false
 � 	�� � �p	true� false


�n�� p	true� false
 � 	q	��� ��
 � p	�true��false


� p	true� false
 � p	q	��� ��
 � �true� q	��� ��
 � �false

� p	true � 	q	��� ��
 � �true
� false � 	q	��� ��
 � �false


�k p	false� false

� false

where n is the number of steps applied on �� until a head normal form q	��� ��
 is
reached� This shape is completely forced by the lazy strategy� within the n�� and
k steps some non�determinism is present� but always k � �� Note that reductions
inside �� and �� are never permitted� By Lemma � we have n � �m� so the length
of the reduction is linear in m� Note that we only considered unshared rewriting�
In shared rewriting however essentially the same lazy reduction is forced�

Conversely� it can be proved that for 	� � � 		p� xor p�
 xor p�
 � � �
 xor pn the
apply�algorithm determines the ROBDD in time quadratic in n� while the lazy
strategy admits reductions of length exponential in n� The proof is similar to
that of Example � ut



The lazy reduction appears to be similar to the up�one algorithm in ���� There
it is shown that for certain benchmarks up�one is relatively e�cient� but there
additional rewrite rules are used� e�g� x xor x� false� We have proved that it can
also be an improvement without adding more rules� On the other hand� we gave
an example on which the traditional apply�algorithm turned out to be better�

� Conclusion

The TRS approach is promising� as it concisely and �exibly describes the BDD
data structure and operations� Extensions to the data structure� like comple�
mented edges� DDDs� BEDs and EQ�BDDs can be obtained basically by ex�
tending the signature� Various known algorithms are obtained as di�erent re�
duction strategies� In this way the relative complexity of various proposals can
be analyzed�

Acknowledgment� We want to thank Vincent van Oostrom for his contribution
to the theory of sharing and for many fruitful discussions�

References

	� Andersen� H� R�� and Hulgaard� H� Boolean expression diagrams� In Twelfth

Annual IEEE Symposium on Logic in Computer Science �Warsaw� Poland� 	�����
IEEE Computer Society� pp� 

��
�

�� Bryant� R� E� Graph�based algorithms for boolean function manipulation� IEEE
Transactions on Computers C���� 
 �	�
��� ������	�

�� Bryant� R� E� Symbolic boolean manipulation with ordered binary�decision dia�
grams� ACM Computing Surveys ��� � �	����� �����	
�

�� Burch� J�� Clarke� E�� Long� D�� McMillan� K�� and Dill� D� Symbolic
model checking for sequential circuit veri�cation� IEEE Trans� Computer Aided

Design ��� � �	����� ��	�����
�� Clarke� E�� Emerson� E�� and Sistla� A� Automatic veri�cation of �nite�

state concurrent systems using temporal logic speci�cations� ACM Transactions

on Programming Languages and Systems 	� � �	�
��� ��������
�� Groote� J�� and van de Pol� J� Equational binary decision dia�

grams� Tech� rep� SEN�R����� CWI� Amsterdam� ����� Available via
http���www�cwi�nl��vdpol�papers�eqbdds�ps�Z�

�� Klop� J� W� Term rewriting systems� In Handbook of Logic in Computer Science�
D� G� S� Abramski and T� Maibaum� Eds�� vol� �� Oxford University Press� 	����


� Meinel� C�� and Theobald� T� Algorithms and Data Structures in VLSI Design


OBDD � Foundations and Applications� Springer� 	��
�
�� M�ller� J�� Lichtenberg� J�� Andersen� H� R�� and Hulgaard� H� Dierence

decision diagrams� In Computer Science Logic �Denmark� Sept� 	�����
	�� Plump� D� Term graph rewriting� In Handbook of Graph Grammars and Comput�

ing by Graph Transformation� volume �
 Applications� Languages �	����� H��J� K�
H� Ehrig� G� Engels and G� Rozenberg� Eds�� World Scienti�c� pp� ���	�

		� van de Pol� J� C�� and Zantema� H� Binary decision diagrams by
shared rewriting� Tech� Rep� UU�CS��������� Utrecht University� �����
Also published as CWI report SEN�R���	� Amsterdam� Available via
http���www�cs�uu�nl�docs�research�publication�TechRep�html�


